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Lubrication in a corner
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A mathematical model for the evolution of a thin film in an interior corner region
is presented. The model is based on the idea that the film can be considered thin
everywhere in the η-direction if viewed in the new coordinate system ξ = x2 − y2,
η =2xy. Lubrication theory is applied to the governing equations written in this co-
ordinate system. The exact integration of the mass conservation equation for a no-slip
boundary condition yields a single evolution equation, which is integrated numerically.
The evolution of a thin film driven by surface tension and gravity is predicted as a
function of the Bond number and successfully compared to laboratory experiments.

1. Introduction
Studies on the behaviour of thin liquid films are of universal interest due to their

extensive practical applications. Readily available reduced models can be used to
investigate their evolution and stability in response to a wide range of physical
forces. These films are important in industry, where they are used to coat and
protect surfaces, such as automobile bodies, beverage containers and microelectronic
components (Roy, Roberts & Simpson 2002), or as paints, adhesives and membranes.
Biophysical applications include the liquid lining of the lungs (Grotberg 1994) where
capillary–elastic instabilities can lead to collapse of a vessel (Rosenzweig & Jensen
2002), the film protecting the cornea of the eye (Wong, Fatt & Radke 1996) and the
motion of contact lenses (Moriarty & Terrill 1996). In environmental processes, thin
films appear in foam dynamics (Wasan, Koczo & Nikolov 1994), lava flows, gravity
currents under water (Huppert 1982), and in the transport of bacteria in laminar flow
over soil (Myers 2003). In agriculture, they play an important role in determining
the effectiveness of agrochemicals such as insecticides and herbicides (Schwartz &
Weidner 1995). Thin films may exhibit rich dynamics, including wave propagation,
steepening, fingering and rupture (e.g. Bertozzi & Pugh 1998). The extensive literature
on these topics is reviewed in Oron, Davis & Bankoff (1997) and Myers (1998).

Recently, considerable attention has been devoted to thin film flows over topo-
graphy. In the coating of microelectronic components, for example, one aims to reduce
the inside (‘fat edges’) and outside (‘picture framing’) corner defects (Schwartz &
Weidner 1995). The shape of the interface is dictated by a competition between the
substrate, which impresses its shape onto that of the interface – effectively contri-
buting an additional capillary pressure – and surface tension, tending to flatten
the free surface and to drive the solution to stable minimum-energy configurations
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(Kalliadasis, Bielarz & Homsy 2000). Short-wavelength irregularities of the free
surface are rapidly levelled by surface tension forces, while the long-term evolution is
determined primarily by the topography of the substrate (Roy et al. 2002).

Unfortunately, a standard lubrication approach is a priori not expected to be accur-
ate in the neighborhood of steep features, due to the small-slope assumption. Despite
this limitation Stillwagon & Larson (1988, 1990) derived, and successfully compared
to experiments, a single fourth-order, nonlinear, diffusion-like evolution equation des-
cribing the levelling of micron-sized isolated trenches by spin-coating under the
influence of surface tension. Kalliadasis et al. (2000) extended this lubrication theory
over topography to include an external body force, such as gravity, and found that the
free surface develops a ridge just before the entrance to a trench, due to the capillary
pressure gradient induced by the curvature of the substrate. Schwartz & Weidner
(1995) took a different approach and adopted a locally orthogonal coordinate system
that naturally fits an arbitrarily curved substrate where the film thickness is assumed
to be small compared to the radius of curvature of the substrate. Roy et al. (2002)
developed a more complex method, in which an artificial variable, proportional to the
amount of liquid locally above the substrate, is used instead of the liquid thickness;
gravity and inertia are included a posteriori via centre manifold techniques. The latter
two studies both rely on the assumptions made by Stillwagon & Larson (1988) and
no attempt is made at modelling sharp features such as a corner.

The evolution equation used by Stillwagon & Larson (1988, 1990) and Kalliadasis
et al. (2000) assumes that the slopes of both the free surface and the substrate are
small (Kalliadasis et al. 2000). The lubrication approximation is formally valid only
for small-slope profiles and small capillary numbers (Mazouchi & Homsy 2001) and
is expected to break down in the immediate vicinity of a sharp step (Kalliadasis et al.
2000). In such a geometry, one must apply the full Stokes equations. Mazouchi &
Homsy (2001) investigated free-surface Stokes flow over topography with sharp edges
using a boundary integral method, finding good agreement with lubrication theory for
small capillary numbers even in the neighbourhood of steep features. This indicates
that the area around the sharp step where lubrication breaks down is small and does
not significantly affect the levelling of the trench, validating results by Stillwagon &
Larson (1990) and Kalliadasis et al. (2000).

The application that originally motivated the present work is the ‘fishbone’ instabi-
lity observed in filament stretching experiments (sketched in figure 1c) performed on
polystyrene-based Boger fluids by Spiegelberg & McKinley (1996). This instability
occurs exactly at the corner formed by two orthogonally intersecting thin films
(figure 10b of Spiegelberg & McKinley 1996), a common configuration in extensional
rheometers used in the study of complex fluids. For applications such as this in which
the dominant physics occurs inside the corner region, as sketched in figure 1(a),
the existing approaches described above are unsuitable because large gradients in
the shape of the free surface develop and the slope cannot be small everywhere.
Furthermore, the curvature of the substrate diverges at the corner. We propose a
model that relies on a change of coordinates to address this gap in the thin-film
literature. We then develop the lubrication approximation – based on this change of
coordinates – for a film bounded by a solid corner. The analogous free-film geometry
is addressed in Stocker & Hosoi (2004).

In contrast to the classical Landau–Levich problem (Landau & Levich 1942), where
an infinite plate is pulled out from a deep pool of liquid, the film is thin along both
walls in the configuration we are considering (figure 1a). Landau & Levich derived
separate expressions for the thin film coating the plate and the meniscus in the deep
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Figure 1. (a) Sketch of a thin film in an interior corner. d is the distance from the origin to the
point on the free surface where ξ = 0 (i.e. x = y). (b) Cross-section of bubble flow in a square
capillary, far from the bubble’s ends. The thick line indicates the capillary, the thin line is the
surface of the bubble, which is moving out of the page. Such non-axisymmetric bubbles form
at small capillary numbers (<0.04). (c) Stretching of liquid filaments, as observed, for example,
in rheological experiments. The arrow indicates the region where ‘fishbone’ instabilities were
observed experimentally by Spiegelberg & McKinley (1996) in non-Newtonian fluids.

pool and closed the problem by matching curvatures. This approach differs from ours
in two important respects. First, the deep pool is replaced by a thin film in which
viscous stresses dominate. Second, the weakest link in the Landau–Levich solution –
the matching – occurs precisely in the region of interest, the corner. The model
proposed herein eliminates the need for a matching condition.

An example of a film evolving in a corner bounded by two solid walls is the flow
of long gas bubbles in square or rectangular capillaries (Kolb & Cerro 1993a, b;
Thulasidas, Abraham & Cerro 1995; Wong, Radke & Morris 1995; Bico & Queré
2002; Hazel & Heil 2002), sketched in figure 1(b). This mechanism has important
applications in oil recovery from porous rocks, in the coating of tubes of square cross-
section and in automotive or industrial monolithic reactors. For oil recovery, square
capillaries provide a better model for the irregular and angular nature of the porous
media and the thickness of the wetting film is a direct measure of the unrecoverable oil
fraction (Kolb & Cerro 1993b). Theoretical analysis has been developed for axisym-
metric bubbles (Kolb & Cerro 1993a, b; Thulasidas et al. 1995) valid when the capil-
lary number is larger than 0.04 (Thulasidas et al. 1995). For smaller values, bubbles
become non-axisymmetric and flatten out against the tube walls, creating liquid
regions in the corners separated by thin flat films (figure 1b). In the reference frame
of the bubble, the flow in these corner regions (sufficiently far away from both ends
of the bubble) is an example of a thin film in a corner. Liquid corner regions also
arise in the imbibition of a close-packed assembly of fibres (Bico & Queré 2002).
Weislogel & Lichter (1998) and Weislogel (2001) investigated a similar geometry to
ours, with capillary flow in a direction perpendicular to the plane of the corner.

After deriving the governing equations in the new coordinate system in the next
section, lubrication theory is applied in § 3 to derive an evolution equation for a film
with no-slip boundaries. Details of the derivations are presented in two Appendices.
The numerical method applied in solving the evolution equation is detailed in § 4 and
results are given in § 5. We chose not to perform a transverse linear stability analysis,
since our focus in this paper is on presenting a method to develop lubrication theory
in a corner and not on the physical mechanism responsible for instability in any
particular context. Comparisons with experiments, designed to provide a test bed for
the model, are presented in § 6. The final section discusses the limitations of the model
and the modifications required for several applications.
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2. Hyperbolic coordinates
2.1. The governing equations in vector form

The flow in an interior corner is considered, as sketched in figure 1(a). The momentum
and continuity equations are, respectively,

−∇p

ρ
+ ν∇2u − g k̂ = 0, ∇ · u = 0, (2.1a, b)

where u is the velocity field, p is the pressure, ν is the kinematic viscosity, ρ is the

density, g is the acceleration due to gravity and k̂ is the unit vertical vector, positive
upwards. Here we consider low-Reynolds-number flows, thus inertial terms have been
neglected in (2.1). We will consider two-dimensional systems, assuming no variation
in the third dimension. The two stress boundary conditions at the free surface are

n̂ · Π · n̂ = σκ, t̂ · Π · n̂ = 0, (2.2a, b)

where n̂ and t̂ are the unit outward normal and tangent vectors to the free surface,
respectively, σ is the surface tension, and κ = −∇ · n̂ is the curvature of the free
surface. For a Newtonian fluid, the stress tensor is

Π = µ[∇u + (∇u)T ] − pI, (2.3)

where µ = ρν is the dynamic viscosity, I the identity matrix and T indicates a transpose
matrix. Furthermore, conservation of mass and no-slip at the corner’s walls will be
imposed.

2.2. The change of coordinates

The fundamental idea presented herein is to exploit the fact that, at all positions along
the wall, the film is thin if measured in a direction transverse to the wall. Cartesian
coordinates (x, y) are not well suited for such an approximation, because the film is
not everywhere thin in one of the two coordinate directions (or, equivalently, because
the slope is not everywhere small). On the other hand, if we introduce the hyperbolic
coordinate system

ξ = x2 − y2, η = 2xy, (2.4a, b)

shown in figure 2, for all values of ξ (i.e. everywhere along the wall) the film can be
treated as thin in the η-direction. Note that the Cartesian axes now correspond to
η = 0, with η increasing with x and y in the first quadrant. The second coordinate,
ξ , increases along the wall from large y towards large x, in the shape of hyperbolas.
The change of coordinates (2.4) is a special case (n= 2) of the analytical conformal
map transformation for a corner of angle π/n:

ξ = Re[(x + iy)n], η = Im[(x + iy)n], (2.5a, b)

where Re and Im indicate the real and imaginary part, respectively. The derivations
become cumbersome for arbitrary n. Here we will pursue the simplest and most
interesting case of a square corner (n = 2).

The coordinate system (2.4) is orthogonal, since the mixed scale factor

∂x

∂ξ

∂x

∂η
+

∂y

∂ξ

∂y

∂η
(2.6)
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Figure 2. The hyperbolic coordinate system (ξ = x2 − y2, η = 2xy).

is everywhere zero. The scale factors associated with the ξ - and η-directions are equal
and given by

s =

[(
∂x

∂ξ

)2

+

(
∂y

∂ξ

)2 ]1/2

=

[(
∂x

∂η

)2

+

(
∂y

∂η

)2 ]1/2

=
1

2
√

r
, (2.7)

where r = (ξ 2 + η2)1/2 = x2 + y2. The derivatives of (x, y) with respect to (ξ, η) – as well
as the expressions for gradient, divergence and Laplacian in hyperbolic coordinates –
are given in Appendix A.1. The coordinate transformation (2.4) is singular at the
origin; however, this does not represent a problem since, excluding rupture at the
origin, the free surface of the film never passes through the singularity.

2.3. The governing equations in the hyperbolic coordinates

Using (A 1), (A 2), (A 4), and (A 12), we can rewrite the governing equations (2.1) in
hyperbolic coordinates:

∂u

∂ξ
+

∂v

∂η
+ f1u + f2v = 0, (2.8a)

1

ρ

∂p

∂ξ
=

ν

s

[
∂2u

∂ξ 2
+

∂2u

∂η2
− 1

r2

(
η
∂v

∂ξ
− ξ

∂v

∂η
+

u

4

)]
− g

∂y

∂ξ
, (2.8b)

1

ρ

∂p

∂η
=

ν

s

[
∂2v

∂ξ 2
+

∂2v

∂η2
− 1

r2

(
− η

∂u

∂ξ
+ ξ

∂u

∂η
+

v

4

)]
− g

∂y

∂η
, (2.8c)

where f1, f2, ∂y/∂ξ and ∂y/∂η are functions only of the position (ξ, η) and are defined
in Appendix A.1. The explicit dependence of the equations on position represents
an important variation with respect to Cartesian coordinates. The first two terms
in the square brackets are the Laplacian of the scalar quantities u and v, while the

remaining terms arise because the unit vectors ξ̂ and η̂ are position dependent (see
Appendix A.2).
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In order to transform the normal stress boundary condition (2.2a), the curvature κ

in the new coordinates is computed from the unit outward normal vector (A 5) using
(A 2b):

κ = −∇ · n̂ =
h′′

s(1 + h′2)3/2
+

h′f1 − f2

s(1 + h′2)1/2
, (2.9)

where η = h(ξ, t) is the position of the interface in hyperbolic coordinates and a prime
denotes a derivative with respect to ξ . Using expression (A 7) for a Newtonian stress
tensor together with (A 5), (A 6), and (2.9), allows us to write the stress boundary
conditions (2.2) as

−p +
2µ

s(1 + h′2)

[
∂v

∂η
− ξu

2r2
+h′2

(
∂u

∂ξ
− ηv

2r2

)
+ −h′

(
∂v

∂ξ
+

∂u

∂η
+

ηu + ξv

2r2

)]
= σκ,

(2.10a)

2h′
(

∂v

∂η
− ∂u

∂ξ
+

ηv − ξu

2r2

)
+ (1 − h′2)

(
∂v

∂ξ
+

∂u

∂η
+

ηu + ξv

2r2

)
= 0. (2.10b)

The last equation to be imposed is conservation of mass (or, equivalently, volume,
since we assume a constant density), expressing the fact that the time rate of change
of a volume element must equal the net volume flux from the neighbouring elements.
In (ξ, η) the volume of liquid between ξ and ξ + �ξ is∫ h(ξ )

0

∫ ξ+�ξ

ξ

s2 dξ dη = �ξ

∫ h(ξ )

0

s2 dη, (2.11)

where we have used the fact that a volume element can be approximated as a rectangle
of width s�ξ as �ξ → 0. The net flux into the element is∫ h(ξ )

0

u(ξ, η)s dη −
∫ h(ξ+�ξ )

0

u(ξ + �ξ, η)s dη. (2.12)

As �ξ → 0, mass conservation therefore implies

∂A

∂t
+

∂Q

∂ξ
= 0, (2.13)

where

A =

∫ h(ξ )

0

s2 dη, Q =

∫ h(ξ )

0

u(ξ, η)s dη. (2.14a, b)

3. Lubrication theory
3.1. The reduced equations

In this section, lubrication theory is applied to the full governing equations (2.8),
(2.10), and (2.13) to obtain a single evolution equation for the film ‘thickness’ h(ξ, t).
Such a reduced model relies on the existence of two widely disparate length scales. The
advantages over an entirely numerical approach include avoiding the complexity of the
original free-boundary problem, computational savings and a deeper understanding
of the underlying physics. We begin by rescaling the governing equations (2.8), (2.10)
and (2.13) by writing

ξ = L2ξ̃ , u = Uũ, t = T t̃ = Lt̃/U, (3.1a–c)

η = L Hη̃, v = V ṽ, p = P p̃, (3.1d–f )
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where tildes denote dimensionless variables. Here L is the characteristic length scale
along the layer, H is the characteristic thickness of the film, U and V are characteristic
velocities along and across the layer, respectively, and P is the pressure scale. Since
(ξ = x2 − y2, η = 2xy) are quadratic in the Cartesian coordinates, we have rescaled ξ

by L2 and η by L H . Therefore, h(ξ, t) is not properly a thickness, but has dimensions
of a length squared. In order to include the case of zero gravity, a characteristic
velocity along the wall is defined in terms of viscosity and surface tension as U = σ/µ.
Thus, the characteristic time T = L/U required for a fluid parcel with velocity U

to travel across the length L of the layer, becomes T = µL/σ . Only dimensionless
variables will be used from now on unless otherwise stated and the tildes will be
dropped.

In the lubrication limit, it is natural to assume that the parameter ε =H/L is small
and to expand the dependent variables u, v and p in powers of ε:

u = u0 + ε2u2 + O(ε4), (3.2a)

v = v0 + ε2v2 + O(ε4), (3.2b)

p = p0 + ε2p2 + O(ε4). (3.2c)

The expansion parameter ε is proportional to the filling fraction, the detailed relation
depending on the initial condition. Quantities depending on the position (ξ, η) are
also made dimensionless (f1 scales like L2, f2 like ε/L2, and s like 1/L). We rescale
(2.8), (2.10), and (2.13), substitute for (3.2), and retain only the lowest-order terms in
ε. The position-dependent terms f1, f2, and s also involve the expansion parameter ε

and could in principle be expanded in powers of ε. However, this makes the equations
singular at ξ = 0. Further details on this point are given in § 3.3, where we discuss
an approximate solution, derived by retaining only the leading-order terms for the
position-dependent quantities.

The continuity equation (2.8a) yields a relation between the two velocity scales,
V = εU . The Bond number Bo = ρg L2/σ represents the relative importance of gravity
and surface tension. The momentum equation along ξ (2.8b) suggests a pressure
scale P = σ/(ε2 L), which is standard for lubrication theory (Myers 2003), and thus
reduces to

∂p0

∂ξ
= 2

(
ξ 2 + ε2η2

)1/4 ∂2u0

∂η2
− ε2Bo

∂y

∂ξ
, (3.3)

where ∂y/∂ξ is a function of position only, given in (A 1c). The momentum equation
along η (2.8c) becomes

∂p0

∂η
= −ε2Bo

∂y

∂η
, (3.4)

while the stress boundary conditions at the free surface η = h are

−p0 = ε3κ,
∂u0

∂η
= 0. (3.5a, b)

In (3.3), (3.4) and (3.5) we chose to retain gravity and surface tension to leading order,
since we are interested in the case in which both effects enter into the dominant force
balance. In particular, we have retained the full curvature in (3.5a), as done first by
Ruschak (1978). This ensures that the potential energy is the same as that of the full
equations, so that ‘exact surfaces of static equilibrium are also equilibrium solutions
of the model’ (Eggers & Dupont 1994), these being the states that minimize potential
energy.
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3.2. The evolution equation

The system of equations at O(1), namely (2.13), (3.3), (3.4), and (3.5), can now be
solved subject to the no-slip boundary condition. Integrating (3.4) in η, from η to
h, and imposing the normal stress boundary condition (3.5a) at η = h, yields an
expression for pressure:

p0 = −ε3κ + ε2Bo[y|h − y|η], (3.6)

where y is given in terms of ξ and η in (A 1a) and the vertical bar indicates at which
value of η a quantity is evaluated. Substituting (3.6) into (3.3) and rearranging, we
find

∂2u0

∂η2
=

ε2γ (ξ )

2(ξ 2 + ε2η2)1/4
, (3.7)

where

γ (ξ ) = −εκ ′ + Bo
∂y

∂ξ

∣∣∣∣
h

. (3.8)

The curvature gradient κ ′ is obtained after some algebra as

κ ′ =
2α

β3
h′′′ − 6ε2α

β5
h′(h′′)2 − 3(h − ξh′)(ξ + ε2hh′)

2α7β
, (3.9)

where α = (ξ 2 + ε2h2)1/4, β = (1 + ε2h′2)1/2, and

∂y

∂ξ

∣∣∣∣
h

=
1

2
√

2(
√

ξ 2 + ε2h2 − ξ )1/2

[
ξ + ε2hh′√
ξ 2 + ε2h2

− 1

]
. (3.10)

Again, we will not approximate (3.10) to avoid incurring singularities at ξ = 0.
The integration of (3.7) can be carried out exactly in terms of the hypergeometric

functions 2F1 (Abramowitz & Stegun 1965). Making use of (3.5b) and the no-slip
condition u0 = 0 at η = 0, we eventually find

u0(η, ξ ) =
γ (ξ )|ξ |3/2

3

[
1 − 2F1

(
−1

2
, −3

4
;
1

2
; −ε2η2

ξ 2

)
− 3ε2ηh

2ξ 2 2F1

(
1

4
,
1

2
;
3

2
; −ε2h2

ξ 2

)]
.

(3.11)

Note that the first hypergeometric function is evaluated at η, while the second one is
evaluated at h. When we substitute (3.11) into the mass conservation equation (2.13),
all integrals except for one can be evaluated exactly. In particular:

∂

∂t

∫ h(ξ )

0

s2 dη =
∂

∂t

∫ h(ξ )

0

1

4(ξ 2 + ε2η2)1/2
dη =

1

4(ξ 2 + ε2h2)1/2

∂h

∂t
. (3.12)

In addition, the following two indefinite integrals are used:∫
1

(ξ 2 + ε2η2)1/4
dη =

h

|ξ |1/2 2F1

(
1

4
,
1

2
;
3

2
; −ε2η2

ξ 2

)
, (3.13a)∫

η

(ξ 2 + ε2η2)1/4
dη =

2

3ε2
(ξ 2 + ε2η2)3/4. (3.13b)

Combining these results, we find the evolution equation

1

4(ξ 2 + ε2h2)1/2

∂h

∂t
− ε

6

∂

∂ξ

{
h2γ (ξ )R

(
ξ

εh

)}
= 0, (3.14)
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where

R(z) = |z|
{[

−2 +

(
1 +

1

z2

)3/4]
2F1

(
1

4
,
1

2
;
3

2
; − 1

z2

)
+

∫ 1

0

2F1

(
− 1

2
, − 3

4
; 1

2
; − η̂2

z2

)
(1 + η̂2/z2)1/4

dη̂

}
.

(3.15)

We were unable to evaluate the last integral analytically.
In unidirectional lubrication theories that use arclength along the substrate as the

long coordinate (Schwartz & Weidner 1995; Roy et al. 2002), the second derivative
of the substrate’s curvature (which is already a delta function) enters the evolution
equation. This represents a strong singularity and cannot be handled numerically
without approximations. By adopting our change of coordinates, the only remnant of
the substrate’s sharp corner is a weak singularity in (3.14) arising from the absolute
value in (3.15). Assuming that the gradient of the free-surface curvature κ ′ (≈h′′′) can
offset the discontinuity, it can be shown that h is at least C2, that is the singularity
shows up only in the third and higher derivatives. This weak discontinuity is easily
overcome by the numerical solution, as demonstrated in the following sections by the
smoothness of all our numerical profiles.

3.3. An approximation of the evolution equation

The price to pay for avoiding the strong singularity due to the sharp corner, is that we
must retain ε in the final evolution equation (or, alternatively, in the initial condition).
In most formulations, though not all (e.g. Hosoi & Mahadevan 1999), this does not
occur. The reason for retaining ε in the position-dependent terms is that lubrication
theory is based on the relative magnitude of variations in the dependent variables, that
is derivatives. No assumptions are made about quantities that depend on position
alone. This is not an issue in Cartesian coordinates, as purely position-dependent
terms never arise. While one may not call our approach ‘standard lubrication theory’
due to this perhaps spurious retention of the expansion parameter ε, it is nevertheless
clear that our formulation provides a straightforward way of dealing with a geometry
that is out of reach for most other methods, without resorting to the full Stokes
equations. For this reason, the filling fraction remains as a parameter, through ε.

In this paper, all integrals in the mass conservation equation but one could be solved
exactly. On the other hand, it is to be expected that in more complex scenarios – such
as a domain stretching in time or a non-Newtonian stress tensor – one would not be
able to perform the integration analytically. The expansion of the position-dependent
terms would then possibly allow an exact integration. It is therefore important to have
an understanding of the accuracy of this approximation. In this section we derive an
approximate evolution equation obtained by expanding the position-dependent terms
in ε. In the present case the only such term is 1/s in (2.8b), which reduces to

1

s
= 2(ξ 2 + ε2η2)1/4 ≈ 2|ξ |1/2

[
1 + O

(
εη

ξ

)2]
. (3.16)

The difference introduced by the approximation in (3.16) in the governing equations
is that |ξ |1/2 replaces (ξ 2 + ε2η2)1/4 in (3.3), yielding

∂2u0

∂η2
=

ε2γ (ξ )

2|ξ |1/2
(3.17)

instead of (3.7). The right-hand side of (3.17) is now independent of η, allowing two
straightforward integrations in η. Use of the boundary conditions at η = 0 and h



362 R. Stocker and A. E. Hosoi

0 0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

1.8

2.0

ξ

Rapprox
R

ε = 0.01

ε = 0.1

ε = 0.001 

10–4 10–3 10–2 10–1 100
0

0.2

0.4

0.6

0.8

ε

E
rr

or

(b)(a)

Figure 3. (a) Ratio of Rapprox (3.20) to R (3.15) as a function of the along-wall coordinate ξ ,
for h = 1 and three values of ε, using N =5000 grid points. Rapprox/R → 1 as ξ → ∞, indicating
that Rapprox is a good approximation to R unless ξ is very close to zero. (b) The error incurred
by approximating R with Rapprox, computed as the integral of Rapprox/R − 1 over 10−5 <ξ � 1,
shown as circles. The error grows approximately like ε0.9 (the solid line represents 0.67ε0.9)
and vanishes as ε → 0.

yields

u0 =
ε2γ (ξ )

2|ξ |1/2

(
η2

2
− ηh

)
. (3.18)

Note that this velocity profile is parabolic as expected, but it is parabolic in the new
coordinate system. When this expression is substituted into the mass conservation
equation (2.13), the following integrals arise:

1

2

∫ h(ξ )

0

η2s dη =
h

10ε2

[
(ξ 2 + ε2h2)3/4 − |ξ |3/2

2F1

(
1

2
,
1

4
;
3

2
; −ε2h2

ξ 2

)]
, (3.19a)

∫ h(ξ )

0

ηhs dη =
h

2

∫ h(ξ )

0

η

(ξ 2 + ε2η2)1/4
dη =

h

3ε2

[
(ξ 2 + ε2h2)3/4 − |ξ |3/2

]
. (3.19b)

We eventually find the approximate evolution equation to be of the same form as
(3.14), with R(z) in (3.15) replaced by

Rapprox(z) = |z|
[

−1 +
7

10

(
1 +

1

z2

)3/4

+
3

10
2F1

(
1

4
,
1

2
;
3

2
; − 1

z2

)]
, (3.20)

where z = ξ/(εh).
In order to use this approximation confidently, we need to quantify the error we

are introducing. It is evident that Rapprox → R when |z| � 1 (i.e. |ξ | � εh). However,
as z → 0, R → 1 while Rapprox diverges, indicating that in general Rapprox is not a good
representation of R close to ξ = 0. This is shown in figure 3 (a), where the ratio
Rapprox/R is plotted for h = 1 and three values of ε. In computing R, the integral
in (3.15) was evaluated numerically using the trapezoidal rule. The ratio Rapprox/R

always diverges as ξ → 0, but it asymptotes to 1 as ξ → ∞ in all three cases, showing
that Rapprox accurately approximates R for all values of ξ , except for the region closest
to ξ =0. The discrepancy is barely discernible in figure 3 (a) for ε = 0.001, but grows
with ε. On the other hand, we can show that the influence of this region is small.
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Figure 3 (b) shows that the error incurred by approximating R by Rapprox tends to zero
as ε → 0. That error was computed as the integral of Rapprox/R−1 over 0 <ξ � 1. Since
Rapprox → ∞ as |ξ | → 0, we started the numerical integration at ξ =10−5 and verified
that the changes induced by a smaller starting value are negligible. The error grows
approximately like ε0.9. Thus, the integral contribution of the point-wise singularity
to the overall evolution of the film is subdominant (mathematically, a portion of the
integrand diverges, but its contribution to the integral is nevertheless small) and we
can expect accurate results for thin films even when the position-dependent terms
are approximated. This solution is effectively equivalent to solving left and right of
ξ = 0 and then arguing that – as the approximation breaks down only in a tiny
neighbourhood of ξ = 0 – any errors that may be introduced are bounded owing to
exact mass conservation.

As the approximation (3.20) involves no significant loss in accuracy, but consider-
able saving in computational time (since we avoid the numerical evaluation of the
integral in (3.15)), all simulations in this paper are based on the approximate solution.
The fact that the outcomes agree well with both theoretical and experimental results –
as will be seen – further justifies the use of the approximate solution. In particular, in
no case was a singular behaviour near ξ = 0 observed. In the next section we describe
the numerical scheme we used to solve (3.14) with R(z) replaced by Rapprox(z).

4. Numerical solution of the evolution equation
In our numerical solution the fourth-order equation (3.14) is first split into two

second-order equations, by defining an auxiliary variable f = h′′ (which is not the
curvature, since we are not in Cartesian coordinates). Denoting the term in curly
brackets in (3.14) as q , the numerical scheme becomes

F n+1
i =

1[
ξ 2
i + ε2

(
hn+1

i

)2]1/2

hn+1
i − hn

i

�t
− ε

6

(
qn+1

i+1/2 − qn+1
i−1/2

)
(�+

i − �−
i )/2

= 0, (4.1a)

Gn+1
i = f n+1

i − m+
i hn+1

i+1 − mih
n+1
i − m−

i hn+1
i−1 = 0, (4.1b)

where the subscript i represents the ith grid point, and the free surface is located at (ξi ,
hn+1

i ) at time step n+1. The integration was performed on a non-uniform grid, so that
a higher grid-point density could be adopted closest to the corner. Details of the grid
are given in Appendix B. The distance between grid point i and its two neighbours
i ± 1 is �

±
i = |ξi±1 − ξi |. First derivatives were approximated by centred differences.

Second derivatives were computed on a three-point stencil as a weighted average of
the first forward and backward derivatives, as in (4.1b), with m+

i = 2/[�+
i (�+

i + �−
i )],

mi = −2/(�+
i �−

i ) and m−
i = 2/[�−

i (�+
i +�−

i )]. Equation (4.1a) was discretized in flux-
conserving form in order to ensure numerical mass conservation. At each grid point
i only the outward flux, qi+1/2, was computed, while for the inward flux, qi−1/2, we
reused the outward flux of its left neighbour i − 1.

The scheme is backward in time and uses an adaptive time step based on a step-
doubling algorithm (Press et al. 1992) to minimize the computational time. At each
step, two solutions are computed: the first (SB) by using the full time step �t , the
second (SS) by taking two steps of length �t/2. If the error |SB − SS |, averaged over
all grid points, is larger than a specified tolerance (typically 10−4), the step is rejected
and repeated after halving the time step. Otherwise, the step is accepted and an
extrapolated value S = 2SB − SS of the solution is computed which achieves O(�t2)
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accuracy. The next time step is then increased by a factor inversely proportional to
the error.

The solution at any step was found by solving (4.1) implicitly. The Jacobian of the
functions F and G in (4.1) was computed analytically, resulting in a heptadiagonal
matrix (three non-zero diagonals on each side of the main diagonal) that was
inverted using standard Gaussian elimination for banded matrices. A Newton iteration
procedure correctly showed quadratic convergence and after a maximum of four
Newton iterations the residual never exceeded 10−14.

As the four boundary conditions for the fourth-order differential equation (3.14)
we chose no-flux and zero (Cartesian) slope at both ends (ξ = ±1). These conditions
must be expressed in the hyperbolic system. For slopes, we have

dys

dx
=

h(ε2hh′ + ξ − r)

2r(r − ξ )
≈ ε

(
h′ − h

2ξ

)
, (4.2a)

dxs

dy
= −εh

2r
− ε3h2h′

2r(r + ξ )
≈ −ε

(
h′ − h

2ξ

)
, (4.2b)

where (4.2a) is used if the free surface is written as ys(x) (numerically more accurate
for y >x, i.e. at ξ = −1), while (4.2b) is used if the free surface is written as xs(y)
(for ξ =1). Since εh 	 |ξ | is always true at the boundaries, we can use the Taylor-
approximated relations in (4.2). A similar reasoning applies for the flux boundary
condition. The flux in (x, y) is the volume of fluid crossing a line x = constant (for
x >y) or y = constant (for y >x) in unit time. The flux in (ξ, η), on the other hand, is
the volume of fluid crossing a line ξ = constant in unit time. While it is cumbersome
to transform a flow rate given in (x, y) into its (ξ, η)-equivalent, we note that in the
lubrication limit the two flow rate definitions coincide to within a term of O(ε2) when
εh 	 |ξ |. This is certainly the case at the boundaries, since far away from the corner
the lines of constant ξ tend to coincide with the lines of constant x (for x > y) or
constant y (for y >x). Thus, the flux specified in the (x, y) system can be directly
applied in the (ξ, η) system. Further details of the numerical scheme, along with
results from convergence tests, are given in Appendix B.

5. Results
We begin by testing the ability of the model to capture the evolution of a thin film

under surface tension alone (Bo = 0). Figure 4 (a) shows the case of an initially L-
shaped profile for ε =0.04. For this initial condition, the expansion parameter, ε, can
be related to the filling fraction, FR , of the unit Cartesian box by FR = ε(1 − ln ε).
The two can thus be used interchangeably as a measure of the film thickness. For
ε = 0.04, FR =0.169. Surface tension progressively reduces the gradient of curvature
everywhere and eventually the fluid assumes the shape of a quarter of a circle (profile
at t = 105), whose radius of curvature is determined only by FR . As expected, different
initial conditions (e.g. a hyperbola) with the same filling fraction led to the same
steady state. In particular, the model correctly captures the fact that – irrespective of
the particular initial condition – the sharp corner in the substrate never causes any
singularity in the free surface of the film.

The steady state for several values of FR is shown in figure 5 (a). For FR <FRcr =
1 − π/4 
 0.215, the liquid retracts towards the corner, where it forms a quarter of a
circle. For FR >FRcr , there is enough fluid for the curvature to be the same everywhere.
In all cases, the curvature gradient is everywhere zero (except in the small transition
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Figure 4. (a) Snapshots of the evolution of a thin film governed by surface tension (Bo = 0)
for FR =0.169 (ε = 0.04). The profiles correspond to the dimensionless times t = 0, 3.6 × 10−4,
0.67, 22.9, 112.6, 105. By t = 105 the profile has reached steady state. (b) The steady state of a
draining thin film governed by gravity and surface tension for several values of Bo (0, 4, 10,
20, 50, 100, 200, 1000, 10000) and FR = 0.169 (ε = 0.04). Gravity forces the film to drain from
the vertical wall and to form a pool at the bottom, whose size increases with Bo. In both panels
the initial condition consists of an L-shaped region of liquid with a sharp corner. No-flux and
zero-slope boundary conditions were imposed at both ends (ξ = ±1).
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Figure 5. Steady-state profile (a) and curvature (b) of a thin film governed by surface tension
(Bo = 0) for several values of FR , indicated in the plots. For the critical filling fraction
FR = 1 − π/4 
 0.215 (ε = 0.055) the steady-state configuration is a quarter of a circle with
curvature 1 (thicker lines in (a) and (b)). All cases were simulated up to t =105 and no further
evolution occurred for larger times. The constant value of the curvature indicates that the
steady-state profiles predicted by the model are correct, as they correspond to the states of
minimum energy. Note that in (a) the curve for FR = 0.008 is indistinguishable from the axes
at this resolution. The initial and boundary conditions are as in figure 4.

region between the two regions of constant curvature) and the curvature of the
circular region (figure 5b) matches the one computed theoretically, since the steady
state is the state that minimizes the surface area (here, the perimeter), for a given FR .
Note that the model performs accurately even for rather large values of ε, the largest
filling fraction in figure 5 corresponding to ε = 0.3.
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Figure 6. The time scale for evolution to steady state for Bo = 0 and FR = 0.008, 0.215,
0.330, 0.512, 0.662 (bottom to top). Thinner films take longer to reach steady state due to the
larger influence of viscous drag. d is the distance indicated in figure 1 (a), normalized by its
steady-state value. The initial and boundary conditions are as in figure 4.

The time scale required to reach steady state as a function of the filling fraction can
be inferred from figure 6. Here, the distance from the origin of the free-surface point
lying on x = y (that is, ξ = 0) – normalized by its steady-state value – is plotted versus
time. Evolution is faster for larger filling fractions. The film reaches steady state after
approximately t = 0.1 for FR = 0.662 and takes 106 times longer for FR = 0.008. Thus,
for small filling fractions the evolution is very slow. This reflects the fact that the
viscous drag exerted by the boundaries plays a more important role when the film is
thin.

The typical velocity profile across a thin film in lubrication theory over a solid
unidirectional substrate is parabolic (e.g. Myers 2003). In § 3.3 we showed that – if
the position-dependent terms in the governing equations are also expanded in ε –
the resulting velocity profile (3.18) is parabolic in η, which corresponds to a quartic
in Cartesian coordinates. This quartic dependence is strongest near the corner and
reduces to the expected Cartesian parabolic profile in the far field. On the other
hand, the full velocity profile (3.11) is not exactly parabolic in η, and we expect the
difference to be more pronounced nearest to the corner. Figure 7 compares the shape
of u0 from (3.11) to the approximate form (3.18), each normalized by its maximum
value, as we are only interested in the shape of the profile. The normalized profiles
depend on ε and ξ only through the ratio ε/|ξ |. Figure 7(a) compares the two velocity
profiles for ε/|ξ | =105, while figure 7(b) shows the maximum deviation of u0 from a
parabola as a function of ε/|ξ |. For each value of ε/|ξ |, the deviation at each η was
computed as the relative difference between the two normalized velocities defined in
figure 7 (a). Away from the corner (large |ξ |) and for very thin films (small ε), the velo-
city profile is indistinguishable from parabolic. However, even very close to the corner
(small |ξ |) and for relatively thick films (large ε), the relative deviation of u0 from
parabolic never exceeds 3.5%. For example, for ε = 0.01, the velocity profile is every-
where parabolic to within 1%, except for the region |ξ | < 0.01 closest to the corner.
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Figure 7. (a) The full velocity profile ((3.11), solid line) and the approximate velocity profile
((3.18), dashed line) for ε/|ξ | = 105 and h = 1. The approximate velocity is exactly parabolic in
η. Each velocity has been normalized by its value at η = h. (b) The maximum relative deviation
of the full velocity profile (3.11) from a parabolic one (in η/h) as a function of ε/|ξ |.

We should emphasize again that the parabolic dependence is in the hyperbolic – not
the Cartesian – coordinates.

When Bo �=0, the evolution is governed by the competition between gravity and
surface tension. Gravity destroys the symmetry about ξ = 0: the film drains down from
the vertical wall and forms a pool along the bottom. This behaviour is accentuated
for larger Bo. Figure 4(b) shows the steady-state shapes for several values of Bo. The
fact that some fluid is retained on the vertical wall by surface tension even at steady
state is due to the symmetry boundary condition applied at ξ = −1. As Bo increases,
more fluid drains from the vertical wall and the pool at the bottom becomes larger.
It is straightforward to show that for this steady case, (3.14) correctly reduces to the
Young–Laplace equation for a static meniscus (see e.g. Landau & Lifschitz 1987).

We verified that the model can also capture, at least qualitatively, the initial stages
of the evolution of a liquid film coating a ceiling near a vertical wall. In this case,
gravity drives the fluid away from the ceiling, either by drainage along the vertical
wall or by dripping. Lateral drainage prevails when FR is large and Bo is small. For
small FR and large Bo, the film becomes unstable and forms steady-state pendant
drops before it has the time to drain down the wall, as shown in figure 8. We observed
up to five drops, the number of drops increasing with Bo. Yiantsios & Higgins (1989)
investigated the formation of drops in a thin viscous film, showing that, for small Bo,
steady-state pendant drops are possible and correctly predicted by lubrication theory.
Using their notation, all the steady-state cases in figure 8 qualify as small-Bo cases.
Furthermore, their theory predicts the drop’s length to decrease with Bo, a trend that
is successfully captured by our model. Larger Bo cannot be achieved as the numerical
film ruptures. This is also in line with Yiantsios & Higgins’ conclusion that lubrication
theory fails at large Bo, when the interface becomes highly convoluted. The decay in
amplitude of the drops towards the corner is due to the asymmetry introduced by the
presence of the vertical wall. We did not concern ourselves extensively with pendant
drops, since our change of coordinates is certainly not the simplest approach to this
geometry. However, the fact that our model is able to capture steady-state pendant
drops correctly gives further confidence in its validity.
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Figure 8. Formation of steady-state pendant drops. FR = 0.056 and 0.014 correspond to
ε = 0.01 and 0.002, respectively. The solid wall is indicated by a thick line. Only a portion of
the vertical axis is shown. The initial and boundary conditions are as in figure 4.
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Figure 9. Schematic of the experimental device (not to scale). The square box is made out
of Plexiglas and a solution of water and glycerol is injected in the gap – shown as a hatched
region – between the box and the ‘cookie-cutter’. The experiment consists of lifting the
‘cookie-cutter’ and observing how the fluid evolves under surface tension. In a second set of
experiments the box is tilted to investigate the effect of gravity. No ‘cookie-cutter’ is used in
this case.

6. Comparison with experiments
As a further validation of the model, a comparison with a set of simple experiments

was carried out. The experiments concern the evolution of a thin layer of fluid under
the combined action of surface tension and gravity. The experimental device, shown
in figure 9, consists of a square Plexiglas box without a lid, with a Teflon coated
bottom to maximize the contact angle with the fluid and to minimize pinning of
the contact line. The inner size of the box is 5 × 5 cm2. A smaller, ‘cookie-cutter’-like
shape, 4.4 × 4.4 cm2, was positioned inside the box, so that the two were concentric
and their four sides parallel, forming a 0.3 cm wide gap between the inner sides of the
box and the shape. The corners of the shape were smooth, with a radius of curvature
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of 0.3 cm. The gap was filled with a glycerol-water solution, dyed with thymol blue for
visualization purposes, whose typical depth was less than 1 mm. The ‘cookie-cutter’
was removed suddenly by pulling it up vertically.

Digital pictures of the steady state were taken and image processing was used to
reconstruct the position of the interface. After converting the image to a grey-scale
colour map, the interface was defined by setting a threshold value of grey. The
reconstructed interface is insensitive to small changes in this threshold value. Only
experiments in which symmetry among the four corners was preserved were retained,
to obtain an easy comparison of the steady state with that obtained from the model,
in which a zero-slope and zero-flux boundary conditions at both ends were imposed.
FR for the model was determined by integrating the area of the reconstructed profile.
One example of the comparison is shown in figure 10 for Bo = 0 and FR =0.19.

One discrepancy between the model and the experiments derives from the fact
that the experiment did not evolve to the theoretical steady state (e.g. figure 5). In
particular, the thickness of the film at ξ = ±1 did not tend to zero. This discrepancy is
due to three-dimensional effects. Since the profile has a finite depth and a non-trivial
shape in the third dimension, an additional curvature exists. The latter is opposite in
sign to the main curvature and becomes important as the film approaches steady state.
Ultimately, when the depth of the film becomes comparable to its width, the evolution
is arrested. In addition, pinning effects cannot completely be avoided, despite the fact
that a very hydrophobic substance (Teflon) was chosen to coat the bottom of the
box. This contributes to the premature arrest of the evolution. Note that viscosity is
irrelevant in determining the steady-state shape – determined only by FR and Bo –
but influences the time scale of the evolution. To obtain a comparison with the
experiments, the numerical model was integrated up to steady state and the profile at
some time t that most closely matched the experimental observation was chosen. The
best match was determined by minimizing the absolute value of the difference of h

from the model and from the experiments. We are thus assuming that the evolution
in the experiments follows the predictions up to a certain time, then stops due to
three-dimensional effects. This points both to the limitation and the accuracy of the
model. The limitation is clear in that any three-dimensional effects cannot be captured
in the current analysis. On the other hand, the comparison in figure 10 shows that
the model works extremely well, in that it almost perfectly captures the shape of the
steady-state profile, up to the point where three-dimensional effects become dominant
and arrest the evolution.

Figure 11(a, b) reinforces this conclusion, showing that the agreement is good
irrespective of the filling fraction. Unfortunately, no consistent pattern was observed
in the times of best fit, nor could they be reliably linked to the adjustment process in
the experiment. The experiments could be enhanced by eliminating the pinning effects,
which would result in a better comparison with the predicted steady state. However,
these limitations are due to the experimental setup and since the focus of this paper
is on the model, we did not proceed further in the experimental investigation.

The effects of gravity were introduced by slightly tilting the experimental device. In
this case, no ‘cookie-cutter’ was used. Instead, a quantity of fluid was injected along
the four walls of the box, so as to wet all of them. Most of the fluid was injected
adjacent to one of the four sidewalls while the box was held with its bottom horizontal.
Viscosity prevented the fluid from flowing under this configuration. The box was then
tilted suddenly by a small angle (2.3◦) so that the fluid started to flow down towards
the opposite wall evolving under gravity and surface tension, and eventually reached
steady state. The image processing and the method of comparison with the model
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1 cm 

Figure 10. The steady state of a thin film governed by surface tension (Bo = 0): model predic-
tion (thick line) versus experimental result (background picture). The filling fraction is FR = 0.19
(ε = 0.047). The dashed line indicates the position of the walls of the box. Note that the steady
state is different from the one in figure 4(a) due to three-dimensional effects. The initial and
boundary conditions for the simulation are as in figure 4.

were the same as in the previous case. Figure 11(c, d) shows results for Bo = 15 and
two values of FR .

While the experiments demonstrated that the model correctly reproduces the evolu-
tion of a thin film in a corner under surface tension and gravity, they also pointed out
the importance of three-dimensional effects. The applicability of our two-dimensional
model therefore needs to be carefully assessed on a case-by-case basis.

7. Discussion
We have derived an evolution equation for the flow of a thin film in a corner

region and applied it to simple test cases. While the focus of this paper has been the
development of a new method to apply lubrication theory in a corner, it is hoped
that this approach will be helpful in many practical situations where thin films have
to negotiate a corner. It is now appropriate to discuss the flow configuration in more
detail, as well as the advantages and the limitations of this method, in conjunction
with its possible applications.

Moffatt (1964) described the asymptotic flow of a viscous fluid near a corner of
arbitrary angle θ . He found that an infinite geometric progression of eddies can
develop, whose size and intensity fall off rapidly due to viscosity. When the sides of
the corner are two solid walls, as in the case treated here, eddies can form for θ < 146◦.
In our configuration, Moffatt’s semi-infinite fluid domain is replaced by a thin layer
having a free surface, prompting the question of whether eddies can still arise. While
our lowest-order model is intrinsically unable to capture eddies (as the lowest-order
velocity is approximately parabolic in the new coordinates), it is most accurate in
the limit of extremely thin films, where eddies are least likely to develop. Thus, if



Lubrication in a corner 371

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

FR = 0.163

Bo = 0

y

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

FR = 0.320

Bo = 0 

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

FR = 0.337

Bo = 15

y

x
0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

FR = 0.458

Bo = 15

x

g g

(a) (b)

(c) (d )

Figure 11. The steady state of a thin film governed by surface tension for different values of FR

and Bo: model predictions (dash-dotted line) versus experimental results (thick solid line). The
two lines are on top of each other almost everywhere, indicating the good agreement between
theory and experiments. The interface for the experiments was reconstructed digitally as
explained in the text. The initial and boundary conditions for the simulations are as in figure 4.

Moffatt eddies are to form – a question best answered by solving the full Stokes flow
equations – we would expect them in thicker films, where our approximation loses
validity. It is interesting to note that eddies cannot form in a square corner when at
least one of the two sides is not a solid wall (Moffatt 1964).

The advantage of our approach over a full numerical solution of the original govern-
ing equations is apparent in terms of the computational time – each of the simulations
presented in this paper took only a few seconds on a 1.8 GHz Pentium 4. Furthermore,
aside from the complexities of any numerical code dealing with a free surface, this
geometry presents additional difficulties in defining a two-dimensional grid since, as
the film becomes thinner, the cells become more and more elongated, eventually
making a fully numerical scheme unstable. A clever choice of the grid in a finite
element method would be one derived from our change of coordinates (see figure 2).
Of course, this choice is not feasible when using finite differences, unless the equations
are solved in the (ξ, η) coordinate system. Compared to more general lubrication
approaches developed for thin films over topography (e.g. Roy et al. 2002), ours has
the advantage of being simple both in the formulation and in the implementation. In
addition, our method is specifically tailored to a sharp corner, where the substrate’s
curvature and its gradient become singular. In our approach, this singularity does not
prevent exact integration of the mass conservation equation.

It is interesting to compare the present approach with the method of spines,
originally developed by Kistler & Scriven (1983) (see also Heil & White 2002). In that
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method, the film thickness is measured in the direction of certain pre-determined
vectors – the spines – originating from the substrate. Conditions are imposed on
the choice of the spines such that they do not intersect inside the fluid domain.
Conceptually, this has some similarity with our approach, as we measure the thickness
of the film along η. Lines of constant ξ could then be interpreted as curved spines,
while the orthogonality of the coordinate system guarantees that our ‘spines’ do not
intersect. With respect to ours, the method of spines has the advantage of being
applicable to more general substrates. On the other hand, Heil & White (2002)
showed that for highly curved substrates lubrication theory implemented using the
method of spines does not ensure conservation of volume. They therefore developed
a modified lubrication equation by introducing an appropriately chosen film density.
However, they recognize that this ad hoc modification is not ‘rational’ in the sense of
a long-wavelength asymptotic theory. In this respect, our change of coordinates has
the merit of implicitly ensuring volume conservation, as well as being a more direct
application of the traditional lubrication approach, based solely on the recognition
that the film is everywhere thin if measured along η. Recently Jensen, Chini & King
(2004) applied the method of spines to a lubrication model of an interior corner,
again using a modified film density to ensure volume conservation.

The application of our model to the ‘fishbone’ instability of Spiegelberg & McKinley
(1996), which originally motivated the present study, would require three main modi-
fications. First, a non-Newtonian stress tensor would make the analytical integration of
mass conservation more difficult. In general, we expect additional evolution equations
associated with the fluid’s constitutive relation (Schultz 1987; Olagunju 1999). Second,
the asymmetric stretching of the domain must be taken into account (e.g. only along y,
not along x). Third, ‘mixed’ boundary conditions must be used – no-slip on the bottom
plate and symmetry across the centreline of the vertical filament. A linear stability
analysis could then be performed numerically to (perhaps) capture the ‘fishbone’
instability. We did not perform a stability analysis on our solution as Spiegelberg &
McKinley’s experiments exhibit no instability when Newtonian fluids are used.

8. Conclusions
We have shown that lubrication theory can be used in an interior corner following

an appropriate change of coordinates. The equations of motion were written in a
hyperbolic coordinate system and the assumption that the liquid film is everywhere
thin led to a single evolution equation for its thickness. The full curvature and
gravity terms were retained. The simple η-dependence of the lowest-order velocity
field allowed us to integrate the full equation of mass conservation exactly (to within
one integral), with the great advantage of ensuring conservation of mass. We showed
that care must be taken when ξ becomes small, due to the presence of position-
dependent terms that, if approximated, make the equations singular at ξ =0. However,
even when such an approximation is made, the effects on the profile evolution and
steady state are negligible for small film thicknesses. The numerical integration of
the evolution equation has been described and implemented. The outcomes were
successfully compared to theoretical results and simple laboratory experiments on a
thin film in a corner evolving under surface tension and gravity.

We would like to thank Darren Crowdy, David Vener, Constantin Pozrikidis and
José Bico for many useful discussions during the early stage of this manuscript. This
research was partially supported by 3M and by NSF grant 0243591.
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Appendix A. Details of the hyperbolic coordinates
This Appendix provides more details on the derivations in § 2 and § 3.

A.1. Change of coordinates

The following (dimensional) expressions were used in the change of coordinates
ξ = x2 − y2, η =2xy (all notation is defined in the text):

y =

(
r − ξ

2

)1/2

, x =

(
r + ξ

2

)1/2

, (A 1a, b)
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. (A 1i, j )

The expressions for gradient, divergence, and Laplacian in the hyperbolic coordi-

nates, for example applied to the pressure field p and the velocity field u = uξ̂ + vη̂

are (e.g. Arfken 1970)
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1
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η̂, (A 2a)
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where ξ̂ and η̂ are the unit vectors along the hyperbolic coordinate axes, given by
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(
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The full expression for the Laplacian is derived in § A.2. The unit vector k̂ appearing
in the gravity term in (2.1a) transforms as

k̂ =
1

s

∂y

∂ξ
ξ̂ +

1

s

∂y

∂η
η̂. (A 4)

The position of the free surface in hyperbolic coordinates is described by F(ξ, η) =
η − h(ξ ) = 0. The outward unit vector n̂ normal to the free surface can thus be
computed using (A 2a) as

n̂ =
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1
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1

s
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, (A 5)
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while the unit tangent vector is

t̂ =
ξ̂ + h′η̂

(1 + h′2)1/2
. (A 6)

Using (A 2a) again, the stress tensor Π in (2.3) becomes:
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A.2. Laplacian

The Laplacian of u = uξ̂ + vη̂ appearing in the viscous terms of the momentum

equations is somewhat lengthy to compute because the unit vectors ξ̂ and η̂ (A 3) are
position-dependent, resulting in
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The first derivatives of the unit vectors are

∂ ξ̂

∂ξ
=

η

2r2
η̂,

∂ η̂

∂ξ
= − η

2r2
ξ̂ ,

∂ ξ̂

∂η
= − ξ

2r2
η̂,

∂ η̂

∂η
=

ξ

2r2
ξ̂ . (A 9a–d )

Since the second derivatives do not naturally split up into a ξ̂ and an η̂ component,

dot products with ξ̂ and η̂ must be taken. This yields
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We can now rewrite (A 8) by separating the terms contributing to the ξ -momentum

equation ((∇2u) · ξ̂ ) from those contributing to the η-momentum equation ((∇2u) · η̂).
After some simplifications we find:
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Figure 12. Relative error in the predicted steady-state curvature versus the number of grid
points N for Bo = 0 and FR =0.215 (ε = 0.055). κ is the curvature predicted from the model, κ∗

is the theoretical curvature associated with the minimum surface configuration. The curvature
from the model is computed as the average over −0.5 � ξ � 0.5.

Appendix B. Details of the numerical solution
This Appendix provides details on the numerical scheme used to integrate the

evolution equation (3.14). The grid along ξ is determined as follows. Once the
filling fraction FR and the number of grid points N have been chosen, the first
N/2 grid points are taken to be (xi, yi) = (�, 1 − (i − 1) dy), for i = 1 . . . N/2, with
�= 1 −

√
1 − FR and dy = (1 − � − 2/N )/(N/2 − 1). The remaining N/2 grid points

are found by symmetry about x = y. The ξi coordinate of the ith grid point is then
ξi = x2

i − y2
i . For this grid, −ξmax < ξ < ξmax, where ξmax = 1 − �2. The grid points are

therefore uniformly spaced along the Cartesian axes, so the density of grid points is
parabolically increasing with ξ as ξ → 0. This method avoids ξ = 0 being a grid point,
a necessary precaution here since the approximate version of the evolution equation
is used (see § 3.3 for more details). The initial condition hi = 2xiyi then corresponds
to a film of uniform thickness � along both Cartesian axes (an L-shape).

Numerical tests were carried out for FR = FRcr =0.215, Bo =0 and N = 500. The
initial and boundary conditions were the same as in figure 4. The total integration
time was t =105, enough in all cases to achieve steady state. The effect of varying the
number of grid points N can be seen from figure 12, where the error in the steady-state
curvature is plotted against N . The steady-state curvature is constant over ξ and equal
to one, since FR =FRcr . However, a small correction is required due to the change of
coordinates. At t = 0, −ξmax <ξ <ξmax corresponds to the unit Cartesian box. As the
film evolves, it becomes thinner at ξ = ±ξmax, thus corresponding to a box slightly
smaller than the unit box in Cartesian coordinates. This artificial shrinking of the
domain implies that the amount of fluid FR needs to be accommodated in a smaller-
than-unity box. Thus, the expected curvature is slightly larger than the theoretical
one, its exact value being dependent on N . While this is admittedly an artifact of
the numerical scheme and is described further below, its effect is of O(ε). (One could
apply the boundary conditions at a ξ -position that is variable in time, according
to the thickness of the film at the boundary, making the grid time-dependent. This
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would introduce an additional complication that was not pursued in this paper.) In
particular, it can be seen that the curvature predicted by the model converges towards
the expected one as the number of grid points increases. N = 500 was considered
sufficient for the purposes of this paper.

The fluid volume A (i.e. the area) can be computed as:

A =

∫
ξ

∫ εh(ξ )

0

s2 dη dξ =
1

4

∫
ξ

ln

[
εh +

√
ξ 2 + ε2h2

|ξ |

]
dξ. (B 1)

The loss of volume over t = 105 was always less than 0.4%, which can be attributed to
the large values attained by Rapprox (3.20) for small |ξ |.

The numerical scheme was implemented in Fortran. Fortran’s built-in hypergeo-
metric function routine is too inaccurate for our purposes. Thus we approximated the
hypergeometric functions piece-wise using polynomials. The logarithm (log10) of the
hypergeometric function’s argument was split into 100 intervals, from −6 to +4 in
increments of 0.1. In each interval, an nth-order polynomial was fitted to the logarithm
of the hypergeometric function, with the best-fit coefficients determined using Matlab.
We found that n= 14 resulted in the best compromise between accuracy and stability.
Ultimately, this is equivalent to using a table of numbers for the hypergeometric
functions, but has the advantage of obtaining a high accuracy – better than 10−10

for all values of the argument of the hypergeometric functions – without storing an
excessive amount of data.

REFERENCES

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions: With Formulas,
Graphs, and Mathematical Tables . Dover.

Arfken, G. B. 1970 Mathematical Methods for Physicists . Academic.

Bertozzi, A. L. & Pugh, M. C. 1998 Long-wave instabilities and saturation in thin film equations.
Commun Pure Appl. Maths 51, 625–661.
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